比特币的基本算法 比特币具体算法

派币消息 241 0

本篇文章给大家谈谈比特币的基本算法,以及比特币具体算法对应的知识点,希望对各位有所帮助,不要忘了收藏本站喔。

比特币的原理

比特币交易平台比特币的基本算法的盈利方式是手续费比特币的基本算法,也有其它的增值收费模式。

比特币(Bitcoin)是一种基于去中心化,采用点对点网络与共识主动性,开放源代码,以区块链作为底层技术的虚拟加密货币。

由中本聪在2008年提出,2009年诞生,与其他虚拟货币最大的不同,是其总数量非常有限,具有的稀缺性。

与所有的货币不同,比特币不依靠特定货币机构发行,它依据特定算法,通过大量的计算产生,比特币经济使用整个P2P网络中众多节点构成的分布式数据库来确认并记录所有的交易行为,并使用密码学的设计来确保货币流通各个环节安全性。

挖比特币的原理

比特币挖矿比特币的基本算法的话比特币的基本算法,主要是通过算法来获得比特币的比特币的基本算法,而在比特币系统中比特币的基本算法,基本是保证每过大约10分钟,就会有一个节点挖矿成功的,而一旦有人挖矿成功,比特币系统就会奖励此人一定数量的比特币,而这个数量则是通过算法控制的。

而比特币挖矿的原理就是POW算法,也就是工作量证明算法。简而言之就是一份证明,用来确认你做过一定量的工作。

应用到生活当中来说的话,就像你要拿到学位证的话,就需要通过论文,而要拿到驾照的话,就要通过驾照考试。所以比特币挖矿就是根据挖矿贡献的有效工作,来决定货币的分配。

比特币的核心技术包括

主要包括以下几个核心技术比特币的基本算法:1.非对称加密技术

说到非对称加密技术我们就不得不提一下对称加密技术比特币的基本算法,百度是这样解释的比特币的基本算法:所谓对称加密(也叫私钥加密)指加密和解密使用相同密钥的加密算法。有时又叫传统密码算法比特币的基本算法,就是加密密钥能够从解密密钥中推算出来,同时解密密钥也可以从加密密钥中推算出来。

而在大多数的对称算法中,加密密钥和解密密钥是相同的,所以也称这种加密算法为秘密密钥算法或单密钥算法。

它要求发送方和接收方在安全通信之前,商定一个密钥。

对称算法的安全性依赖于密钥,泄漏密钥就意味着任何人都可以对他们发送或接收的消息解密,所以密钥的保密性对通信的安全性至关重要。

是不是看的很懵懂,没关系,我们来举一个小例子:假设特工甲给特工乙发送这样一段密函“明天按照B计划进行任务”,由于对称加密使用同一个密码,所以他们必须提前沟通好密码是什么。

但这样会产生比特币的基本算法了问题,既然加密和解密是同一串密码,那么特工甲和特工乙在传输密码过程中被人监控了怎么办?密码泄露了怎么办?于是,非对称加密技术应运而生。

1976年,美国学者Whitfield Diffie和Martin 梦之旅4图文攻略 Hellman发表了“New Direction in Cryptography”论文,为解决信息公开传送和密钥管理问题,提出一种新的密钥交换协议,允许在不安全的媒体上的通讯双方交换信息,安全地达成一致的密钥,这就是“公开密钥系统”,开创了密码学研究的新方向。

非对称加密技术和对称加密技术最大的不同就是有了公钥和私钥之分。非对称加密算法需要两个密钥:公开密钥(publickey)和私有密钥(privatekey)。公开密钥与私有密钥是一对,如果用公开密钥对数据进行加密,只有用对应的私有密钥才能解密;如果用私有密钥对数据进行加密,那么只有用对应的公开密钥才能解密。公钥是公开的,私钥是保密的。

由于不涉及私钥的传输,整个传输过程就变得安全多了。后来又出现了具备商业实用性的非对称RSA加密算法以及后来的椭圆曲线加密算法(ECC),这些都奠定了加密算法理论的基础,但是美国国家安全局NSA最初认为这些技术对国家安全构成威胁,所以对这些技术进行了严密的监控,知道20世纪90年代末NSA才放弃了对这些技术的监控,这些非对称技术才最终走入了了公众的视野。

说到这里我们就要膜拜一下中本聪了。2013年9月,斯诺登事件告诉大家NSA暗地里偷偷控制加密国际标准,偷偷地监视着大家

比特币如何算出来的

从比特币的本质说起比特币的基本算法,比特币的本质其实就是一堆复杂算法所生成的特解。特解是指方程组所能得到有限个解中的一组。而每一个特解都能解开方程并且是唯一的。

以钞票来比喻的话比特币的基本算法,比特币就是钞票的冠字号码,知道了某张钞票上的冠字号码,就拥有了这张钞票。而挖矿的过程就是通过庞大的计算量不断的去寻求这个方程组的特解,这个方程组被设计成了只有 2100 万个特解,所以比特币的上限就是 2100 万个。

要挖掘比特币可以下载专用的比特币运算工具,然后注册各种合作网站,把注册来的用户名和密码填入计算程序中,再点击运算就正式开始。完成Bitcoin客户端安装后,可以直接获得一个Bitcoin地址,当别人付钱的时候,只需要自己把地址贴给别人,就能通过同样的客户端进行付款。

在安装好比特币客户端后,它将会分配一个私钥和一个公钥。需要备份你包含私钥的钱包数据,才能保证财产不丢失。如果不幸完全格式化硬盘,个人的比特币将会完全丢失。

钱包

比特币钱包使用户可以检查、存储、花费其持有的比特币,其形式多种多样,功能可繁可简,它可以是遵守比特币协议运行的各种工具,如电脑客户端、手机客户端、网站服务、专用设备;

也可以只是存储著比特币私密密钥的介质,如一张纸、一段暗号、一个快闪U盘、一个文本文档,因为只要掌握比特币的私密密钥,就可以处置其对应地址中包含的比特币。比特币无法存入一般的银行账户,交易只能在比特币网络上进行,使用前需下载客户端或接入线上网络。

以上内容参考 百度百科-比特币

高中生如何理解比特币加密算法

加密算法是数字货币的基石,比特币的公钥体系采用椭圆曲线算法来保证交易的安全性。这是因为要攻破椭圆曲线加密就要面对离散对数难题,目前为止还没有找到在多项式时间内解决的办法,在算法所用的空间足够大的情况下,被认为是安全的。本文不涉及高深的数学理论,希望高中生都能看懂。

密码学具有久远的历史,几乎人人都可以构造出加解密的方法,比如说简单地循环移位。古老或简单的方法需要保密加密算法和秘钥。但是从历史上长期的攻防斗争来看,基于加密方式的保密并不可靠,同时,长期以来,秘钥的传递也是一个很大的问题,往往面临秘钥泄漏或遭遇中间人攻击的风险。

上世纪70年代,密码学迎来了突破。Ralph C. Merkle在1974年首先提出非对称加密的思想,两年以后,Whitfield Diffie和Whitfield Diffie两位学者以单向函数和单向暗门函数为基础提出了具体的思路。随后,大量的研究和算法涌现,其中最为著名的就是RSA算法和一系列的椭圆曲线算法。

无论哪一种算法,都是站在前人的肩膀之上,主要以素数为研究对象的数论的发展,群论和有限域理论为基础。内容加密的秘钥不再需要传递,而是通过运算产生,这样,即使在不安全的网络中进行通信也是安全的。密文的破解依赖于秘钥的破解,但秘钥的破解面临难题,对于RSA算法,这个难题是大数因式分解,对于椭圆曲线算法,这个难题是类离散对数求解。两者在目前都没有多项式时间内的解决办法,也就是说,当位数增多时,难度差不多时指数级上升的。

那么加解密如何在公私钥体系中进行的呢?一句话,通过在一个有限域内的运算进行,这是因为加解密都必须是精确的。一个有限域就是一个具有有限个元素的集合。加密就是在把其中一个元素映射到另一个元素,而解密就是再做一次映射。而有限域的构成与素数的性质有关。

前段时间,黎曼猜想(与素数定理关系密切)被热炒的时候,有一位区块链项目的技术总监说椭圆曲线算法与素数无关,不受黎曼猜想证明的影响,就完全是瞎说了。可见区块链项目内鱼龙混杂,确实需要好好洗洗。

比特币及多数区块链项目采用的公钥体系都是椭圆曲线算法,而非RSA。而介绍椭圆曲线算法之前,了解一下离散对数问题对其安全性的理解很有帮助。

先来看一下 费马小定理 :

原根 定义:

设(a, p)=1 (a与p互素),满足

的最下正整数 l,叫作a模p的阶,模p阶为(最大值)p-1的整数a叫作模p的原根。

两个定理:

基于此,我们可以看到,{1, 2, 3, … p-1} 就是一个有限域,而且定义运算 gi (mod p), 落在这个有限域内,同时,当i取0~p-2的不同数时,运算结果不同。这和我们在高中学到的求幂基本上是一样的,只不过加了一层求模运算而已。

另一点需要说明的是,g的指数可以不限于0~p-2, 其实可以是所有自然数,但是由于

所以,所有的函数值都是在有限域内,而且是连续循环的。

离散对数定义:

设g为模p的原根,(a,p) = 1,

我们称 i 为a(对于模p的原根g)的指数,表示成:

这里ind 就是 index的前3个字母。

这个定义是不是和log的定义很像?其实这也就是我们高中学到的对数定义的扩展,只不过现在应用到一个有限域上。

但是,这与实数域上的对数计算不同,实数域是一个连续空间,其上的对数计算有公式和规律可循,但往往很难做到精确。我们的加密体系里需要精确,但是在一个有限域上的运算极为困难,当你知道幂值a和对数底g,求其离散对数值i非常困难。

当选择的素数P足够大时,求i在时间上和运算量上变得不可能。因此我们可以说i是不能被计算出来的,也就是说是安全的,不能被破解的。

比特币的椭圆曲线算法具体而言采用的是 secp256k1算法。网上关于椭圆曲线算法的介绍很多,这里不做详细阐述,大家只要知道其实它是一个三次曲线(不是一个椭圆函数),定义如下:

那么这里有参数a, b;取值不同,椭圆曲线也就不同,当然x, y 这里定义在实数域上,在密码体系里是行不通的,真正采用的时候,x, y要定义在一个有限域上,都是自然数,而且小于一个素数P。那么当这个椭圆曲线定义好后,它反应在坐标系中就是一些离散的点,一点也不像曲线。但是,在设定的有限域上,其各种运算是完备的。也就是说,能够通过加密运算找到对应的点,通过解密运算得到加密前的点。

同时,与前面讲到的离散对数问题一样,我们希望在这个椭圆曲线的离散点阵中找到一个有限的子群,其具有我们前面提到的遍历和循环性质。而我们的所有计算将使用这个子群。这样就建立好了我们需要的一个有限域。那么这里就需要子群的阶(一个素数n)和在子群中的基点G(一个坐标,它通过加法运算可以遍历n阶子群)。

根据上面的描述,我们知道椭圆曲线的定义包含一个五元祖(P, a, b, G, n, h);具体的定义和概念如下:

P: 一个大素数,用来定义椭圆曲线的有限域(群)

a, b: 椭圆曲线的参数,定义椭圆曲线函数

G: 循环子群中的基点,运算的基础

n: 循环子群的阶(另一个大素数, P )

h:子群的相关因子,也即群的阶除以子群的阶的整数部分。

好了,是时候来看一下比特币的椭圆曲线算法是一个怎样的椭圆曲线了。简单地说,就是上述参数取以下值的椭圆曲线:

椭圆曲线定义了加法,其定义是两个点相连,交与图像的第三点的关于x轴的对称点为两个点的和。网上这部分内容已经有很多,这里不就其细节进行阐述。

但细心的同学可能有个疑问,离散对数问题的难题表现在求幂容易,但求其指数非常难,然而,椭圆曲线算法中,没有求幂,只有求乘积。这怎么体现的是离散对数问题呢?

其实,这是一个定义问题,最初椭圆曲线算法定义的时候把这种运算定义为求和,但是,你只要把这种运算定义为求积,整个体系也是没有问题的。而且如果定义为求积,你会发现所有的操作形式上和离散对数问题一致,在有限域的选择的原则上也是一致的。所以,本质上这还是一个离散对数问题。但又不完全是简单的离散对数问题,实际上比一般的离散对数问题要难,因为这里不是简单地求数的离散对数,而是在一个自定义的计算上求类似于离散对数的值。这也是为什么椭圆曲线算法采用比RSA所需要的(一般2048位)少得多的私钥位数(256位)就非常安全了。

写到这里,本文关于比特币的基本算法和比特币具体算法的介绍到此为止了,如果能碰巧解决你现在面临的问题,如果你还想更加了解这方面的信息,记得收藏关注本站。

标签: #比特币的基本算法

  • 评论列表

留言评论